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Abstract

Big data analytics is the journey to turn data into insights for more informed
business and operational decisions. As the chemical engineering commu-
nity is collecting more data (volume) from different sources (variety), this
journey becomes more challenging in terms of using the right data and the
right tools (analytics) to make the right decisions in real time (velocity). This
article highlights recent big data advancements in five industries, includ-
ing chemicals, energy, semiconductors, pharmaceuticals, and food, and then
discusses technical, platform, and culture challenges. To reach the next mile-
stone in multiplying successes to the enterprise level, government, academia,
and industry need to collaboratively focus on workforce development and
innovation.
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INTRODUCTION

Big data is an emerging topic affecting many aspects of our lives. In 2012, President Obama
launched his big data research and development initiative. In 2014, the resulting committee pub-
lished a report (1) discussing big data potential and data policy, stating

[w]e are living in the midst of a social, economic, and technological revolution. How we communicate,
socialize, spend leisure time, and conduct business has moved onto the Internet. The Internet has in
turn moved into our phones, into devices spreading around our homes and cities, and into the factories

that power the industrial economy. The resulting explosion of data and discovery is changing our world.

The big data era is driven by the explosion of data in all fields in terms of new data generation
(e.g., social media), new measurement capability (e.g., internet of things, smart digital devices),
improved data storage power (e.g., cloud computing), and improved computing technology for
analytics (e.g., machine learning, artificial intelligence, cognitive computing).

In a business context, big data topics are regularly covered in public media. Major business
publishers, including The Economist, Fortune, Forbes, Financial Times, Harvard Business Review,
Newsweek, The New York Times, The Wall Street Journal, and The Washington Post, have published
articles on topics ranging from an overview of big data to enabling big data technologies, from
business value and use cases to future prediction, from government policy to data security and
privacy.

In a science and engineering context, there has been an exponential increase in big data pub-
lications (see Figure 1). Premier journals Nazure and Science published editorials on the role of
big data in scientific research and highlighted the challenges and opportunities surrounding big
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Number of publications containing the keyword “big data” since 1991 (through the Web of Science search
engine).
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data (2, 3). Perspectives of big data on specific fields such as neuroscience (4) and chemometrics
(5) are available. The National Academy of Engineering discussed critical big data topics in two
Frontiers of Engineering conferences and published its Winter 2014 report highlighting global
perspectives on big data development (6).

In a chemical process industry context, Qin (7) commented that for well-understood chemical
mechanisms, first-principles approaches can be used effectively to develop mechanistic models
for process operations. For complex processes for which first principles are not well understood,
process data analytics are valuable assets to provide insights on process improvements. Big data
has room to grow into a new paradigm for process industries to enhance data-driven operations
and control. In Chemical Engineering Progress’s March 2016 special issue on big data analytics, a
four-article series outlines the Why (why you should care about big data) (8), the What (success
stories in the process industries) (9), the How (getting started on the journey) (10), and the Future
(challenges and future research directions) (11). Given that big data discussions are blooming in
all fields, it is perhaps surprising to see that a literature search using keywords “big data” and
“chemical engineering” does not result in a substantial number of references.

This article first provides a definition for big data and then explores recent advancements in
data-driven approaches in five industries, including chemicals, energy, semiconductors, pharma-
ceuticals, and food. The goal of this article is twofold: (#) to educate the chemical engineering
community about big data’s ability to enable more possibilities to accelerate research and devel-
opment (R&D) and to improve operational reliability and efficiency in various industry sectors
and (b) to emphasize future big data research directions and how the community can collectively
respond to challenges.

DEFINING BIG DATA FOR CHEMICAL ENGINEERS

Early discussions of big data date back to 2001, when an analyst of the META Group (currently
Gartner) used the 3 V’s to describe the characteristics of data growth (12):

B Volume: the ever-increasing amount of data generation and collection

B Velocity: the need for faster collection and processing speed to deal with large volumes of
data

B Variety: the need to contextualize all types of data, including structured and unstructured
data (such as texts, audio, video, webpages, and reports)

An additional V, veracity, is often added to indicate that not all data are created equal and that
varied noise and uncertainty in data present a challenging aspect for data analysis. Data veracity
is often a coupled challenge when the other three V’s are present.

Since the term big data was coined, there have been several debates on its precise definition.
As of September 2016, Wikipedia (13) defines big data as “data sets with sizes beyond the ability
of commonly used software tools to capture, curate, manage, and process data within a tolerable
elapsed time. Big data size is a constantly moving target, as of 2012 ranging from a few dozen
terabytes to many petabytes of data.” The ARC advisory group points out the common miscon-
ception that big data is a thing (8), and that big data must be big and new hardware and software
tools must be used. This is a likely reason why so few big data—themed articles were found in
the chemical engineering literature. To clear up the misconception, ARC defines big data as “a
journey toward more informed business and operational decisions” (8, p. 32). Simply put, a big
data journey has started if volume, velocity, and variety characterize your data challenges and steps
are taken to seize the opportunities. T'o emphasize more fully the potential of big data, a more
preferable industry term, big data analytics, is used in this article. Big data analytics is the journey
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to turn data into insights for more informed business and operational decisions. Although most
papers cited in the next section do not reference the term big data, they use data-driven modeling
approaches satisfying the original 3 V’s:

B Volume: use an order of magnitude more data to improve decision making

® Velocity: speed up the decision making cycle between data generator and decision maker

B Variety: combine multiple sources of data to validate existing knowledge and to generate
new ideas

ADVANCES IN APPLICATIONS

Chemical Process Industry

The chemical process industry spans a large scale from commodity chemicals, petrochemicals, re-
finery products, specialty chemicals, and life sciences to consumer products. The scale of manufac-
turing increases from small-scale, specialized products, such as life sciences or consumer products,
to large-scale chemical and petrochemical production facilities. Modern petrochemical and chem-
ical complexes are tightly integrated, with many manufacturing units geographically concentrated
in one location. As a result, incremental improvements in energy efficiency, reliability, and safety
would be amplified owing to the economy of scale. A recent survey by PricewaterhouseCoopers
reveals that 88% of chemical industry executives acknowledge that data analytics will be crucial
for retaining the competitive advantage in five years (14). As a result, big data analytics is expected
to be a key growth area in the industry.

Historically, the chemical process industry is one of the earliest adopters of computer-based
control. Safe and efficient plant operation requires constant monitoring of thousands of process
variables. Collection of process data for monitoring and control became routine and provided a
platform for exploration and development of data-driven methods and applications. Database
servers designed specifically for storing process data, such as OSISoft PI™ and AspenTech
IP21™ enabled easy and reliable access to process data by engineers and researchers. The chem-
ical process industry has been a pioneer in adopting data-driven tools owing to this advantage (7).
This section first highlights the ongoing data-driven analytics efforts that have already seen success
in the industry and then discusses the emerging technologies that could potentially revolutionize
analytics-driven decision making.

Advances in continuous processes with higher data volumes. In process monitoring, uni-
variate control charts have been the de facto standard in ensuring processes are operating within
safe limits (15). As plants become more heavily instrumented with thousands of sensors and actu-
ators, the large volume of data can easily overwhelm plant personnel. As a result, many of the data
streams are often not examined. Enterprise Manufacturing Intelligence (EMI) is a platform to
contextualize critical plant key performance indicators into dashboards for real-time visualization.
Based on process knowledge, a troubleshooting guideline can then be built into the EMI plat-
form, facilitating data- and knowledge-driven decisions. The EMI platform has shown measurable
successes at the Dow Chemical Company (referred to as Dow in later texts) (10, 16).
Multivariate analysis is another way to contextualize a large volume of data. Continuous pro-
cesses result in dense (as opposed to sparse) and structured data streams. Multivariate analysis is an
approach to exploit the naturally occurring correlation structures in these dense data sets owing
to flow, mass transfer, energy transfer, and basic thermodynamics. These analysis methods can
be applied in process monitoring to detect faults and ill conditions using process data with much
higher dimensionality. Comprehensive overviews of the state-of-art fault-detection methodologies
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are available (17-19). Among the data-driven modeling methods, projection-based methods, such
as principal component analysis, partial least squares (PLS), independent component analysis,
and canonical variate analysis, have dominated the literature because of their effectiveness in
characterizing large, complex data sets (15). However, model degradation, multiple modal be-
havior, and process nonlinearity remain challenges to sustain model performances. Many efforts
have been made to integrate new machine learning and statistical tools to address these issues,
such as Gaussian mixture modeling (20), Gaussian process regression, multiple model systems
(21), neural networks, support vector machines (22), and kernel-based extensions (23, 24). These
methods have been demonstrated to be effective in simulation data sets, such as the widely used
Tennessee-Eastman problem (25). The current research suggests that there is no magic bullet for
every scenario; instead, the modelers need to create an appropriate combination of tools tailored
for each application.

Inaddition to process monitoring, inferential sensors predictimportant variables using available
process data. The important variables being predicted are often difficult or uneconomical to
measure online. These predictions are often used for advanced control or quality monitoring
and allow plants to react faster to process excursions to prevent off-grade products. Dow uses
inferential sensors extensively for these purposes (26-28). The most common techniques used are
PLS, multiple linear regression, artificial neural networks, supportvector regression, and Gaussian
process regression (29). Aside from challenges in nonlinearity, process drifts, and multiple modes,
inferential sensors also need to consider the trade-off between model complexity and sensitivity.
Through feature selection, model complexity can be minimized by selecting the relevant inputs to
build a more robust model (27). A more comprehensive review of inferential sensor applications
and future trends is available in References 29 and 30.

Advanced control and control loop monitoring also require process data on a much larger
scale than the traditional hierarchical PID-based control structure. Lee & Lee (31) have provided
an overview of recent advancements in advanced control, model predictive control, and plant-
wide control. Plant-wide control loop performance monitoring approaches (32) are an important
resource for assessing efficiency of plant operations. A controller performance assessment strategy
that deals with 14,000 controllers coming from 40 plants located in 9 sites around the world is
available (33). Starr et al. (34) provide another example of an ABB-developed industrial tool that
monitors 600,000 control loops daily. Identifying control loops that have the most impact on the
overall plant performance requires a significant amount of data and a hierarchical analysis process.
Some examples that use this approach on the plant-wide scale can be found in References 35 and 36.

Advances in data variety. Outside of continuous processes, consistent and structured data sets are
rare. In batch processes, scalar, vector, matrix, and sometimes tensor data can exist for each batch.
The data quality is often poorer owing to different sampling rates, missing context, and limited
instrumentation. In these scenarios, data-driven models require dimensionality reduction and
feature extraction techniques to first establish a consistent structure before the classical approaches
in continuous processes can be applied (37, 38). Unfolding, warping, and feature extraction are
common techniques to preprocess the data prior to modeling (39, 40). For multistep or multistage
batch processes, inputs can also be further grouped by phases or blocks to increase interpretability
of the model results (41). Example applications in this area have used batch process data for fault
detection of a commercial fed-batch fermentation system (42) and for product quality inferential
sensors in a batch sulphite pulping process (43).

With the advancements in high-throughput experimental capabilities through laboratory au-
tomation, R&D in the chemical process industry has also benefited tremendously from the avail-
ability of large data sets (44). These large data sets usually contain data from high-throughput
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imaging and online gas chromatography and spectroscopic analyzers. Using informatics methods,
high-throughput experimentation greatly accelerates the pace of R&D in many areas. As an ex-
ample, at Dow, high-throughput capabilities have been used to formulate new polyolefin catalysts
(45), develop new carbon molecular sieves for gas separations (24), and improve formulation of
drilling fluids additives (46).

In addition to instrumental data from the manufacturing environment, business data (order,
sales, production, and customer demand) are also generated in huge quantities. Traditional hi-
erarchies of enterprise resource planning usually decouple sales, supply chain, production, and
process control into separate layers. With advances in numerical algorithms and faster computers,
complex integrated scheduling and control problems that cross multiple layers of the enterprise
resource planning hierarchy can now be solved in a reasonable time frame (47). In work by Nie
etal. (48, 49), an integrated scheduling and control approach minimizes unproductive wait times
between an upstream batch process and a downstream continuous process. The plant scheduling
(future orders) data is included in the real-time optimization of downstream process units. The
combination of scheduling, production forecast, and current operational data allows for smooth
transitions without wait times. Information could also flow in the opposite direction, whereby
uncertainties in production can be incorporated in the planning and scheduling problem via a
stochastic formulation (50). Krumeich et al. (51) also propose integrating planning and control
through big data approaches in the steel industry. Similar approaches to manage inventory and
production can also be found in refinery operations (52-54). Maintenance data in terms of equip-
ment failure rates and reliability data can also be used under an optimization framework to help
optimize turnaround planning under uncertainty for large, complex chemical sites (55).

A common theme that emerges from surveyed works is that most of these applications are tied to
fundamental engineering principles and physics. However, there is in addition a wealth of practical
hands-on experience accumulated in the operational teams. As a result, many efforts have attempted
to reconcile data and knowledge through gray-box modeling, expert systems, heuristic systems,
and fuzzy logic systems. Chiang et al. (56) demonstrated that a causal map constructed from plant
process flow diagrams could help in improving fault diagnosis performance. Reduced models
can be created to optimize performance of units; for instance, Kumar et al. (57) used distributed
temperature data to model the temperature distribution of a methane reforming furnace. The
resulting data then led to a real-time optimization framework to help reduce temperature hotspots
in the furnace.

Energy Industry

The use of data in the chemical process industry has demonstrated improvements in efficiency,
reliability, and safety. The driving force in the energy industry is to fulfill energy consumption
demands in a clean, low-cost, and sustainable way (58). Data-driven approaches are used to bet-
ter estimate consumer demands, to optimize energy management, and to reduce environmental
impact. On the energy supply side, optimizing electricity generation, anticipating plant outages,
and predicting energy consumption are examples of the application of big data analytics. On the
energy demand side, understanding consumer patterns reveals useful information to modify their
behavior and, therefore, minimize consumption. This section focuses on how conventional and
renewable generation, smart grids, and building energy management are benefiting from data-
driven approaches.

Energy supply side. The main motivation of conventional generation is to generate clean elec-
tricity. This can be achieved by either retrofitting existing coal power plants or building new
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natural gas combined cycle power plants. Policies such as the US Clean Power Plan (CPP) are in-
spiring efforts to reduce CO, generation (59). Big data analytics approaches are used to understand
the impact of these policies. For instance, using monthly US electricity generation data from 2001
to 2014, the criteria to meet the specified CPP goals are tracked and the status of CO, emissions
is evaluated. As a result, the impact of the CPP policy on CO, emissions can be quantified (59).

Renewable energy systems (including solar, wind, bioenergy, and hybrid) use energy models
for energy demand forecasting, energy planning (to balance energy supply with demand), and
electricity price estimation (60). To address the stochastic nature of renewable systems owing to
meteorological conditions, data mining approaches have been used to better predict wind power,
wind speed, and wind direction (61). These predictions can then be used to improve energy
management.

To mitigate the intermittent generation of single renewable systems, hybrid renewable energy
systems that combine wind, solar, and other energy generation and storage units (62) have been
demonstrated to balance these fluctuations in power production. Large amounts of historical data
are used to evaluate the impact on meeting electricity demand. For instance, the Wind Integration
National Dataset toolkit combines meteorological, wind power production, and power forecast
data sets for more than 126,000 locations across the United States for a seven-year period (2007
2013) (63). In a case study, Weitemeyer et al. (64) used hourly wind and solar power data for an
eight-year period (2000-2007) in Germany; they found that storage capacity improved the ability
to meet electricity demand by an additional 30% compared with the baseline case in which storage
was not used.

Energy demand side. Big data analytics has been applied in smart grid management (65, 66),
which uses forecasting (67, 68), real-time fault detection (69), load classification, and identifica-
tion of energy consumption patterns. Smart grids facilitate information sharing among power
generation, power transmission, power distribution, and demand management (68). Smart meters
collect real-time data, such as device status and electricity consumption data (70, 71), at a higher
resolution (i.e., 15- or 30-min intervals). Smart meters are capable of monitoring and control-
ling home appliances and can communicate with other meters, enabling customers to have more
control over their energy use. Visualization plays an important role in identifying patterns and
analyzing information from large amounts of data (72), where heat maps, 3D load graphs, and
geographic information systems are useful for identifying issues in energy demand. For instance,
the Mueller community in Austin, Texas, is participating in a smart grid demonstration project
(70). The data collected in Austin are used to understand consumer patterns and then to improve
energy efficiency in the community. Another example using a pilot smart grid evaluated the impact
of appliances on energy consumption (73).

Weather is another important factor for consumer energy demands. Models to forecast elec-
tricity prices (67, 74) or household energy consumption patterns (73, 75) have benefited from
incorporating weather data, resulting in superior performance (76).

Improving energy efficiency in buildings, either residential or commercial (73, 77, 78), is sig-
nificant, as they consume approximately 40% of the total energy consumption in the world (79).
Typically, smart buildings have a large amount of information available in real time, which can
be used to identify the main energy consumers. The typical information available in commercial
buildings includes (#) outside climate data; (b) temperature, humidity, and pressure inside the
building, monitored for each room and floor; (¢) physical building characteristics (such as con-
struction materials or age); (4) number of occupants in each space of the building, which can be
estimated by using timers and motion sensors; and () the overall energy consumed in the building
from utilities and air-conditioning systems (80). When optimizing the energy consumed in the
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building, occupant comfort level, typically defined by proper room temperature and lighting, is a
key aspect that determines success.

In a case study applied to commercial buildings in Switzerland with high energy consumption
(80), the energy consumption in the buildings is predicted by applying data-driven methods. This
prediction is then used to understand consumption profiles to determine strategies to minimize
them. Another example used three years of data to predict the steam load of heating, ventilating,
and air-conditioning systems (78). Furthermore, residential appliance energy consumption data
and weather data can be analyzed in tandem to arrive at optimal appliance operation strategies (73).

In addition to understanding consumption patterns, stochastic model predictive control has
been demonstrated in simulation to account for weather uncertainties to ensure occupancy comfort
while also reducing energy consumption (79). When designing buildings with renewable energy
sources, machine learning approaches have been used to optimize design parameters of the building
for thermal and visual comfort conditions (60).

Because of their exponential growth, the energy consumption in data centers has increased to
1.5% of total electricity consumption (81). Factors that impact data center energy consumption
include computing resources (servers, storage devices, network hardware, and cooling systems)
and physical resources (physical layout and facility location). Rong et al. (82) summarize multiple
efforts to optimize a given data center’s energy consumption. Goiri et al. (81) propose a system of
data center workload management based on predicting the available amount of renewable energy
and electricity prices.

Semiconductor Industry

Outside the chemical process industry, there is a similar need in semiconductor manufacturing
to improve productivity and reduce cycle time and cost (83). The continuous reduction in the
electronic component size of integrated circuits in a silicon wafer enables opportunities to improve
performance. Another growing trend is the increase in the size of silicon wafer diameters from the
current standard of 300 mm to 450 mm to produce more semiconductor devices. Advanced process
control (APC) approaches play an important role in executing these manufacturing trends (84).

APC consists of the following technologies: (#) run-to-run control strategies (85), (b) fault
detection and classification (FDC) systems (86), and (¢) virtual metrology (VM) systems (87, 88).
The enhancement of these APC systems (89) to satisfy semiconductor fabrication facility (fab)
control (from the equipment level to overall product quality of the entire fab) is an example
of the application of big data analytics in the semiconductor manufacturing industry. Additionally,
there is an emerging trend shifting the current focus from analyzing fab data and developing offline
models (90) to online solutions (91) for proactively correcting and improving the efficiency of the
semiconductor fabs.

The measurements collected in a typical semiconductor fab (92) have different sampling pe-
riods that range from milliseconds to weeks. For instance, at the equipment level, temperature
and voltage sensors are measured every second. As wafers are manufactured, they go through
multiple processes, such as chemical mechanical polishing, lithography, etching, and chemical va-
por deposition, among others. Quality properties, such as thickness and resistance, are measured
periodically over a selected sample of wafers, with a typical sampling rate that ranges from hours
to days depending on how the metrology stations are set up in the facility. The wafer acceptance
test (either in-process or final) that ultimately provides information on the quality of the wafers
manufactured can be stored daily to weekly (92). Challenges when working with semiconductor
data sets involve addressing the variety and the volume characteristics.
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The use of data to gain insights. Semiconductor manufacturing control involves the use of
vast amounts of data, such as variables at the equipment level that reflect performance (83) or
final electrical properties that reflect whether or not the wafer is defective. These data sets are
transformed into insights in the following ways: (#) data mining for yield enhancement using
neural networks, decision trees, and Bayesian networks (90, 93, 94) and (b) semiconductor fab-
wide process understanding through modeling of the fab (a model for a material handling system
can be found in Reference 95).

Real-time decision making. Multiple challenges arise when APC applications are used in real
time, such as the need to improve query processing speeds and online model updating. Despite the
current efforts to enhance existing storage systems, there is a need to promptly store and retrieve
data so that it can be analyzed to generate corrective action in real time. An example of a Hadoop
platform, illustrated in Reference 96, shows 4.5-times improvement for storing and querying in
comparison with existing databases.

VM predicts a variety of low sampling rate measurements in real time by using higher sampling
rate data collected in the previous process steps (87). FDC systems that are focused on monitoring
the entire semiconductor fab in real time have been proposed (83, 97). Sophisticated FDC (86,
98, 99) systems that combine run-to-run controllers and VM are used for multiple semiconductor
process units, such as the chemical mechanical polishing process (97).

Benefits of additional data sources and data quality improvements. The removal of noise
from the data set is necessary to improve performance, accuracy, and prediction robustness. Ap-
proaches that use VM combined with FDC systems are capable of removing noise. An example
applied to the photolithography process can be found in Reference 100.

Besides use of semiconductor fab data in APC applications, additional data sets are also being
incorporated in analysis to improve performance. For instance, predictive maintenance, which
estimates when equipment requires maintenance, reduces unscheduled downtime based on the
usage, age, and performance of the equipment. Moyne et al. (96) propose a framework that inte-
grates APC approaches and predictive maintenance. Macher et al. (101) provide another example
of the use of different data sources in the evaluation of the impact of human resources on cycle
time and yield enhancement.

Pharmaceutical Industry

The major themes in using data in the pharmaceutical industry focus on accelerating the pace of
R&D and improving manufacturing quality of the end-products. The industry faces increasing
pressure from rising costs of R&D and stagnant product pipelines. Competition from generic
drugs and expectations from healthcare providers and consumers for lower-cost alternatives have
driven a steady decline in the margins of existing drugs and products. Faced with these challenges,
big data analytics is seen as a venue through which significant additional values could be realized.
The McKinsey report on big data in pharmaceutical R&D estimates that big data—informed
decision making could generate up to $100 billion in value across the US pharmaceutical industry
alone (102).

Drug discovery from pharmaceutical data. Drug discovery has primarily been driven by the
use of high-throughput screening techniques in the past. Although high-throughput screening
has demonstrated considerable success in identifying effective compound-interaction pairings,
the probability of success has seen diminishing returns in recent years (103). Computational drug
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discovery and computer-aided drug design aim to reduce the search space by focusing on specific
interactions using data-driven or mechanistic models. Kuhn et al. (104) gave a comprehensive
review of advances in large-scale predictions of drug-target relationships using publicly acces-
sible databases of drug-target interactions. Klipp et al. (105) focused on biochemical networks
and pathways in which mathematical modeling can be used to aid in analysis of proteins for drug
discovery. Alaimo et al. (106) developed a new network-based inference method that can pre-
dict drug-target interactions. The inference method is able to use existing domain-based knowl-
edge on drug and target similarity. Cheng et al. (107) showed a similar application of network-
based inference in their attempt to predict drug-target interactions specific to breast cancer cells.
Koutsoukas et al. (108) reviewed the databases that are available currently for multitarget drug
design, target predictions, and related applications. Lastly, Perlman et al. (109) applied logis-
tic regression to use drug and gene similarity measures to make predictions of drug-target
interactions.

Incorporating a variety of data in R&D. With the increased collaboration between health care
providers, pharmaceutical corporations, and research institutions, a larger-than-ever variety of
data sources are now accessible by R&D organizations. Using machine learning, researchers are
attempting to combine and draw correlations across clinical, genetic, biochemical, and manufac-
turing data. Tothill et al. (110) demonstrated how to use k-means clustering to identify molecular
subtypes of serous and endometrioid ovarian cancer that are linked to clinical outcomes. Ernst
et al. (111) proposed an unsupervised machine learning method—a multivariate hidden Markov
model that uses combinatorial patterns of chromatin marks to distinguish chromatin states of the
human genome. Halpern et al. (112) developed an unsupervised learning framework that could
predict clinical states from electronic health record data. They also showed that health records
can be represented in a much lower dimension through the use of natural language processing
techniques (113). Cheng & Gerstein (114) provided an example of a deep integrative approach
for a regression task; they modeled the expression levels of genes in mouse embryonic stem cells
from existing gene modifications.

Quality improvements in pharmaceutical manufacturing. Pharmaceutical manufacturing is
another area in which data-driven approaches are used to improve the efficiency, reliability, and
safety of manufacturing processes. This is particularly apparent in the Food and Drug Adminis-
tration’s Quality by Design initiative, which focuses on designing pharmaceutical manufacturing
processes to be inherently robust and reliable (115). Robust and reliable processes require in-depth
understanding not only from a fundamental level but also empirically on how the manufacturing
data should behave in the production environment. Some work in this area reconciles existing
knowledge with plant data. A first principles—based dynamic model is first estimated from the
process data and then applied for control and optimization. For example, Boukouvala et al. (116)
used a Kriging-based approach to identify the unknown parameters of a roller compactor process.
The model was then used to optimize product quality and reduce defect rates. In cases where
the exact structure of the model is not known, generative models from regression methods could
be estimated and used for monitoring and local optimizations. Eberle et al. (117) showed that
through iterative application of PLS and ANOVA analysis, the most frequent causes of yield loss
could be identified and improved. To prevent drug product quality from being affected by un-
desired variability of incoming raw materials, Muteki et al. (118) showed that the effects of raw
materials could be modeled using a latent-variable approach. A subsequent optimization can then
eliminate such variabilities by strategically combining raw materials in later processing steps. Data
from pharmaceutical processes are often heterogeneous (not in continuous time series) and highly
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dimensional. To address these issues, Severson et al. (119) proposed using elastic net regression
to impose regularization on the model inputs. The resultis a sparse model that is more robust and
easier to implement. The approach was demonstrated on an antibody purification process.

Food Industry

Chemical engineering has played an important role in developing sterilization technologies (such
as pasteurization, food packaging systems, preservatives, and irradiation) and reaction processes
(brewing and fermentation). Unit operation (distillation, mixing, fluid and solid transfer) knowl-
edge has also enabled scale-up of food production to an industrial scale. In addition, process
automation and control have enabled efficient, large-scale, and high-quality production of food
products and consumables. In the big data era, advances in high-throughput experimentation, new
sensors, data-driven modeling, numerical solvers, and optimization algorithms are enabling a new
wave of computer-aided developments in the food industry.

The types of data encountered in food processing industries have been as diverse as the industry
itself. For instance, there exist scientific data, such as genomic information on agricultural seeds
and crops; engineering data in manufacturing plants and quality laboratories; and business data
from suppliers, consumers, and the market. This section focuses on scientific and engineering
data-related applications.

Big data analytics at the laboratory scale. Similar to R&D in the chemical process industry,
laboratory-scale R&D in the food industry is using data to develop better formulations, improve
cause-and-effect understanding, and speed up the product development cycle.

In food formulation, big data analytics techniques allow for extracting interactions and useful
correlations from large data sets. For example, Ahn et al. (120) developed a bipartite network
to model the relationship between 381 ingredients commonly used in food recipes throughout
the world and 1,021 compounds that are known to introduce flavor in the known ingredients.
The bipartite network can be used to quantitatively describe differences in flavor and nutritional
content between regional cuisines. Pinel & Varshney (121) later used this network model of food
and recipes to computationally generate new recipes that satisfy existing preferences in nutrition
and taste.

Big data analytics also play a role in the omics fields that are increasingly used for assessment
of raw materials and final products and for development of new processes in food technology.
Techniques such as 2D electrophoresis, hyperspectral imaging, mass spectrometry, and various
tailored chromatography methods have generated abundant high-dimensional data sets that re-
quire machine learning and multivariate data analysis to be effective. In References 122 and 123,
the importance of using multivariate statistical methods rather than conventional univariate meth-
ods is highlighted for high dimensionality of electrophoresis and spectrometry data. There are
many applications of proteomics to address issues in the food industry (124-126).

Big data analytics at the industrial scale. Advancements in Fourier transform infrared (FTIR)
spectroscopy have led to the development of many simple and nondestructive testing methods
for many chemical and physical components. This work, combined with the use of multivariate/
chemometrics models, has led to the adoption of online analyzers in many chemical industries
(127, 128). The increases in FTTR measurement speeds have led to an abundance of large spectra
data that are rich in process information (129). FTIR in food sciences allows for faster, more
accurate, and better detection of contamination, adulteration, and food expiration at a large scale
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that was previously uneconomical to perform. These advancements in sensors have improved the
scale and speed of food quality monitoring and safety detection.

In the area of food authentication, spectroscopy-based sensors can be combined with classifi-
cation algorithms to identify the true origin of the food or product. For example, in a study by
Cozzolino et al. (130), 200 types of red and white wines from 13 regions in Australia were ana-
lyzed using spectroscopy. PLS discriminant analysis models were used to classify their origins. In
a related study (131), detection of honey contamination by added sugar solutions was formulated
as a classification problem. Milk contamination with tetracycline could also be detected using
a similar approach (132). Similarly, classification and regression methods have been applied in
detecting lard adulteration in chocolate (133), vegetable oil adulteration in extra-virgin olive oil
(134), and the presence of high-density lipoprotein in hydrogenated products (135). The review
by Rodriguez-Saona & Allendorf (129) provides a more comprehensive list of spectroscopy-based
detection and quantification applications.

With the increasing availability of inexpensive storage and computing resources, image data
have become more ubiquitous. This has led to the application of image processing and machine
learning techniques in quality control and evaluation in the food industries. In addition to optical
images, image processing techniques can also be applied to data from charge-coupled device cam-
eras, ultrasound, magnetic resonance imaging, near infrared imaging, and electrical tomography
(136). In one study (137), an image recognition system was deployed on an apple conveyer system
that was able to sort apples into different grades based on detection of surface defects. The pre-
processed image goes into a neural network-based classifier that classifies whether the defect on
the apple is real or just part of the stem. Similar applications of defect detection in other species of
apples have also been reported (138). Computer vision has also been applied in estimating quality
of meat products, such as beef tenderness, pork color, and fat percentage in lamb. References 139—
141 provide a comprehensive overview of many additional applications of image classifier or re-
gression models that can aid in quantifying quality measures in many types of food processing
systems.

CHALLENGES
Technical Challenges

Recall that big data in conjunction with analytics is the key to turn data into insights for more in-
formed business and operational decisions. This section summarizes technical challenges outlined
by Reis et al. (11). The most challenging aspect of volume is that not all data are created equal;
users need analytics skill sets to distinguish whether the data are meaningful. For information-
poor data sets, users must filter the noise to enhance the signal. Another critical analytics skill set
is to realize when information is missing in the data sets and design of experiments is needed to
generate the right data.

In terms of variety challenges, the chemical engineering community collects data in the usual
scalar quantities (such as temperature, pressure, flow, and concentration), one-way arrays (such as
spectrum, chromatogram, and particle-size distribution curves), two-way arrays (such as an image
and gas chromatography with mass spectrometry), three-way and higher-order arrays (such as
video and hyperspectral images), and text data (such as email, operator log books, lab notebooks,
and social media discussions). T'o make the situation more challenging, all these data are stored
in various sources, from process historians to application and business databases, websites, email
memos, and handwritten notes. Combing all these data sources to make meaningful conclusions
using analytics is far from trivial.
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In terms of velocity challenges, massive data are collected in real time with different time
resolutions from milliseconds to hours, days, or even months. A first challenge is to select the right
real-time resolution for the analytics applications of interest. Because most chemical processes are
dynamic by nature, a second challenge is to use real-time data to adapt the existing models to
incorporate new information and knowledge.

One of the most common critiques of the big data era is that spurious patterns and correlations
outnumber genuine discoveries. This is often true when big data analytics is applied to chemical
engineering problems without context and domain knowledge. Chemical processes are governed
by first principles. In fundamental modeling approaches, domain knowledge is used to develop a
model, often in a detailed, dynamic, and nonlinear form. For complex industrial processes, the cost,
time, and skill required to develop such fundamental models can be high. Data-driven models can
complement domain knowledge to generate insights, but there have been limited results reported
in the literature (56, 142-144). Integrating fundamental modeling and process knowledge with
big data analytics tools to create enterprise-scale solutions remains another technical challenge.

Platform Challenges

Lack of an appropriate software platform is an important barrier to overcome to implement and
sustain big data analytics applications. These applications require multiple data sources to gather
data and also require a fairly complex computational engine to execute their algorithms. Whereas
proof-of-concept demonstrations in an offline environment are relatively easy, implementing a
tool online in a robust way to ensure industrial reliability is often more challenging. As a result,
industry as a whole must carefully evaluate the trade-off between acquiring standard generic
software that poses limitations on deploying advanced algorithms and developing custom-made
applications that could present maintenance challenges in the longer term.

Culture Challenges

A common theme that emerged from the surveyed papers in the five industries is that there are
multiple pockets of successes. Every industry has its own unique advantages and disadvantages
in applying big data analytics. Take the chemical process industry and the energy industry, for
example. The chemical process industry has a strong tradition of using process data for process
control and monitoring. Building on this foundation, recent advances in process control, real-time
optimization, and integrated scheduling further push the limits on efficiency and reliability. How-
ever, the chemical process industry is slow to respond to real-time customer feedback compared
with the energy industry. For its part, the energy industry has shown considerable advances in
estimating real-time electricity demands and consumer behavior. And the supply side has yet to
use the information uncovered in an efficient manner. There is an opportunity for industries to
leverage off each other and to collaborate at a systematic level.

A more fundamental reason for the observed pockets of success is the lack of common driving
force within and across industries to realize successes at the enterprise level. As an example, there
is a lack of standard benchmark big data analytics problems available to compare published works
even in the same research area. This manifests into multiple approaches being published that
show no significant differences in performance—reinventing the wheel, so to speak. The Netflix
Prize (145), for which a benchmark problem was published and could be solved by any interested
participant, is a good example of such a common driving force. This created an incentive and
an environment to systematically benchmark the contributions of innovation in this area. The
closest example within the chemical process industry would be the Tennessee-Eastman problem
(25); however, this problem is becoming outdated for the chemical engineering community today.
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DIRECTIONS

The overarching theme of the big data era is that data volume will continue to grow exponentially.
A variety of data will arrive, and at a high velocity. To achieve exponential growth in insights,
both workforce development and analytics innovation are needed in the chemical engineering
community.

Workforce Development

As the chemical engineering community is collecting more data (volume) from different sources
(variety), it is increasingly more challenging to use the right data and tools (analytics) to make the
right decisions in real time (velocity). This will require additional skill sets outside of traditional
chemical engineering education. The data scientist is a new breed, and the fastest growing career
of the twenty-first century (146). A data scientist is a professional with technical skills (such as
programming, statistics, mathematics, and model building) and curiosity to make unexpected
discoveries in the big data era. Both the International Data Corporation (147) and McKinsey &
Co. (148) predicted that by 2018, there will be a shortage of 140,000 to 190,000 data science—
related positions in the United States alone.

To meet the growing demand for data scientists, over 70 universities in the United States
are offering one- to two-year master’s degree programs in areas such as analytics, data science,
data analytics, data engineering, predictive analytics, business analytics, and applied computational
science (149). These degree programs provide necessary but insufficient training for graduates to
address big data analytics opportunities in chemical engineering. An interdisciplinary skill set is
needed and should include not only the big data analytics approaches but also a traditional chemical
engineering education, involving unit operations, thermodynamics, reaction kinetics, transport
phenomena, and process control. To address implementation opportunities at the practitioner
level, data scientists should be trained in a five-year bachelor’s/master’s degree program in chemical
engineering, with the fifth year focusing on big data analytics topics. To address the technical
challenges in big data analytics outlined in the previous section, researcher-level training from a
chemical engineering PhD degree program is needed. In addition, on-the-job training in big data
analytics is recommended for experienced professionals.

Big Data Analytics Innovation

Technology readiness level (T'RL) is a commonly used scientific term to discuss maturity in tech-
nology. To propel big data analytics in the chemical engineering community, industry, academia,
and government must collaborate at all TRL levels from fundamental research to commercializa-
tion in the innovation chain shown in Figure 2.

Government Contribution to Innovation

Government is the centerpiece to advance big data analytics innovation. At TRL 4-6, in 2014
the US government established the National Network for Manufacturing Innovation (NNMI)
initiative to foster collaboration between industry, academia, and government. Among the nine
NNMI institutions that were established, big data analytics and workforce development are key
themes in the Digital Manufacturing and Design Innovation Institute and Clean Energy Smart
Manufacturing Innovation Institute. These government-sponsored institutes unite the chemical
engineering community to develop and demonstrate big data analytics technology to solve platform
and technical challenges.
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concept demonstration

Figure 2

Big data analytics collaboration at all technology readiness levels (TRLs) between academia, industry, and government [National
Science Foundation (NSF) and National Network for Manufacturing Innovation (NNMI)].

The US National Science Foundation (NSF) established the Big Data Science and Engi-
neering funding program in 2012 to support fundamental research at TRL 1-3. As shown in
Figure 3, NSF has ramped up funding to over $24 million to support 52 projects in 2016. The
program seeks novel big data analytics approaches in computer science, statistics, computational
science, and mathematics and innovative applications in social and behavioral sciences, geosciences,
education, biology, physical sciences, and engineering (150). Out of the 174 funded proposals
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Figure 3

National Science Foundation Big Data Science and Engineering awards from 2012 to 2016.
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from 2012 to 2016, none were from the chemical engineering community. Small pockets of big
data-related research in chemical engineering are being supported through other NSF programs,
such as cybermanufacturing systems under the Division of Civil, Mechanical and Manufactur-
ing Innovation; computational and data-enabled science and engineering under the Division of
Chemistry; or unsolicited proposals from the Division of Chemical, Bioengineering, Environ-
mental and Transport Systems. Referring to the big data analytics culture challenge, NSF is in the
position to provide a much-needed driving force and a common funding mechanism to advance
big data analytics innovation germane to the chemical engineering community.

Academia Contribution to Innovation

The big data analytics technical challenge can be formulated into fundamental research problems
in TRL 1-3. Chemical engineering faculty members in process systems engineering can expand
their research focus to include PhD-level research programs in big data analytics. Industry is a
good source for big data and funding. Big data analytics is also an active research area among the
machine learning community in computer science departments. Multidisciplinary and industry
collaborations are likely to bear fruits. PhD graduates from the interdisciplinary programs will
become effective researchers to bring further impacts in the community. In the late 1990s and
early 2000s, chemical engineering departments globally saw the need to change their names to
highlight biochemical and biomolecular research; there is likewise a pressing need to integrate big
data analytics research into these departments.

Industry Contribution to Innovation

It is a natural fit for industry to provide input to software vendors to develop sustainable big data
analytics platforms at TRL 7-9. As discussed above, big data analytics shows pockets of success in
R&D, manufacturing, supply chain, and maintenance in all major industry sectors. For companies
that have already started the big data analytics journey and see successes in some functions, the
next milestone is to establish a big data analytics culture to drive data-driven behavior across all
functions. A big data analytics culture will nurture collaboration across all functions and provide a
driving force for companies to take advantage of new and unarticulated enterprise opportunity. To
meet these new business needs, companies must develop test beds to pilot innovation at TRL 4-6
and to provide feedback for academia and/or vendors to formulate research programs at TRL 1-3.

SUMMARY POINTS

1. Big data analytics is the journey to turn data into insights for more informed business
and operational decisions. Based on this definition, the chemical engineering community
started this journey decades ago using data-driven modeling approaches.

2. The chemical process industry has been a fertile ground for some of the foundational data-
driven modeling work. Online instrumentation and centralized control systems allowed
for aggregation and storage of process data for online monitoring and analysis. As a
result, EMI, multivariate control, process monitoring, and inferential sensors have found
early success in the industry. With recent advancements in both computer hardware and
numerical algorithms, real-time model-based control, complex batch process monitoring,
controller performance assessments, and integrated scheduling are recent examples that
attempt to use data with more volume, variety, and velocity.
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3. In the energy industry, smart meters, weather forecasts, and other data sources are im-
proving forecasting capabilities to better understand energy consumption behaviors of
large populations and local neighborhoods. Electricity suppliers are also tapping into
these data sources to anticipate demand surges, detect faults and outages, and improve
system reliability and efficiency.

4. The semiconductor industry is reducing costs through the use of existing data collected
in automated systems. Real-time APC applications are attempting to identify faults,
improve yields, and reduce product variability.

5. Pharmaceutical R&D is incorporating machine learning, dimensionality reduction, and
visualization methods to analyze complex data sets such as gene expression, protein inter-
actions, and drug discovery data. In addition, pharmaceutical manufacturing is improv-
ing quality through model-based control, real-time optimization, and real-time process
monitoring.

6. In the food industry, diverse data sources are incorporated in modeling tastes, nutritional
content, and recipe formulation for food products. The industry is shifting toward using
multivariate methods to identify correlations from bigger data sets. In food manufactur-
ing, spectrum analyzers and imaging sensors are used to detect product quality issues.
Lastly, model-based control and optimization enable safer and more efficient processes.

7. The overarching theme of the big data era is that data volume will continue to grow ex-
ponentially. A variety of data will arrive at high velocity. Technical, platform, and culture
challenges lie ahead in the chemical engineering community. To address the opportu-
nities, academia, industry, and government must collaborate on workforce development
and analytics innovation. Early adopters need to establish a culture to continuously ex-
plore new opportunities and to motivate the rest of the community to start the big data
journey.
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