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Introduction: What Is Data Science and Why
Should Chemical Engineers Care About It?

A
ll of science and engineering, including chemical engi-

neering, is being transformed by new sources of data

from high-throughput experiments, observational stud-

ies, and simulation. In this new era of data-enabled science

and engineering, discovery is no longer limited by the collec-

tion and processing of data but by data management, knowl-

edge extraction, and the visualization of information. The

term data science has become increasingly popular across

industry, and academic disciplines to refer to the combina-

tion of strategies and tools for addressing the oncoming del-

uge of data. The term data scientist is a common descriptor

of an engineer or scientist from any disciplinary background

who is equipped to seamlessly process, analyze, and commu-

nicate in this data-intensive context. The core areas of data

science are often identified as data management, statistical

and machine learning, and visualization. In this Perspective,

we present an overview of these core areas, discuss applica-

tion areas from within chemical engineering research, and

conclude with perspectives on how data science principles

can be included in our training.
As has been noted for several years,1 chemical engineers of

all varieties, from the practicing process engineer to the aca-

demic researcher, are being asked more and more often to

manipulate, transform, and analyze complex data sets. The

complexity often stems from the size of the data set itself, but

this is not the only factor. For example, the stream of informa-

tion available to an engineer in a modern plant is tremendous

because of the proliferation of inexpensive instrumentation

and the nearly ubiquitous high bandwidth and low-latency

connectivity. In the area of research and discovery, a student

or researcher conducting data-intensive experiments, such as

high-resolution particle tracking, might generate more data in

an afternoon than a student from a previous decade in the

entire time spent earning his or her Ph.D. For those conducting

mathematical modeling and computer simulations, advanced

algorithms and hardware now give simulators unprecedented

resolution but at the cost of massive increases in the data set.

Underlying all of these examples is the cheap (near free) cost

of data storage and the ubiquitous availability of our data from

cloud-based services.
The aforementioned examples may appear to be vastly dif-

ferent from the outset. However, common themes in the limi-

tation of our current approaches quickly emerge. Because our

training of new chemical engineers (at all levels) has not kept

pace with the explosion of data, each chemical engineer in the

previous examples will likely approach her or his work in the

same manner: manual searching for relationships in the data,

classical visualization of monovariate or bivariate correlations

in features, and a hypothesis-driven approach to science remi-

niscent of a data-poor era when the researcher or engineer

could essentially manipulate relevant data in their mind. Sim-

ply put, without knowledge about and training on how to han-

dle data skillfully, most of the information from our plants and

refineries, our data-intensive experiments, and our computer

simulations is thrown away, simply because we do not know

how to extract knowledge from it. Fortunately, there is a

potential solution on the horizon. Through the lens of the nas-

cent field of data science, we can see an emergent (and lim-

ited) set of tasks needed by all of the previous chemical

engineers: (1) to manage a huge data set consisting of ensem-

bles of spatiotemporal data, (2) to sensibly read the data in a

computationally scalable manner, and (3) to extract knowl-

edge from this pile of information with robust techniques

whose statistical reliability can be quantified. It also goes with-

out saying that data science itself is not a panacea. Chemical

engineering fundamentals are of the utmost importance, and
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no amount of processing will allow someone to extract mean-
ing from data that was collected incorrectly or has no useful
informational content.

Chemical engineers have always been quick to adopt new

methods and techniques for their toolbox. Indeed, because of

the excellent math and computer skills that many chemical

engineers possess, some of the methods and tools we discuss

have been in use for some time in the chemical engineering

community, or at minimum, for many chemical engineers, the

adoption of these methods should prove to be straightforward.

Additionally, however, the aforementioned challenges now

extend to people who traditionally do not consider their work

to be dependent on their computing skills and capacity. It is

thus our hope that this article will provide a convenient frame-

work and provide a common language to help guide not only

those seeking to use these methods for the first time but also

seasoned veterans who are expanding their capabilities.

Statistical, Machine Learning, and
Visualization Tools Available to Chemical
Engineers

In this section, we provide an overview of the keystone con-

cepts of data science. A commonly used paradigm, which we

adopt here, is the division of data science into three broad cat-

egories: data management, machine learning, and visualiza-

tion. We stress that this section is not an exhaustive

description of all possible methodologies in these topic areas.

Instead, it is meant as a survey of many current, commonly

used methods with short, informative but not overly technical

descriptions and suggestions for further reading. Our goal is to

help readers identify potential tools for addressing data-related

challenges in their research and understanding the keywords

(in boldface) in their application.

Data management

Data science begins with data. In synthetic biology, exam-

ples of data include genomics, transcriptomics, proteomics, and

metabolomics, where datasets are often comparatively abun-

dant. For molecular and nanoscale phenomena, data com-

monly take the form of trajectories or large ensembles of

information. These data could be generated computer simula-

tions or collected from data-intensive experiments, such as

those from high-resolution/high-speed microscopy. At the pro-

cess and systems level, data are often complex, interwoven

time series, for example, complementary sensory and diagnostic

information from a power device or chemical reactor process.
All of these are typified by the requirement to store, man-

age, integrate, and access data collected from one or multiple

experiments or by streaming in directly from instruments.

How we choose to organize, store, and manage our data signif-

icantly impacts the performance of downstream analyses, ease

of sharing, and visualization. Since the early 1980s, spread-

sheets have been an entry-level tool for handling two-

dimensional data, that is, rows and columns. Their utility

begins to break down, however, when data begin to get into

the tens of thousands of rows or are of a higher dimensionality

or when we require complex transformations of data or the

integration of data across a large number of data sets. More-

over, spreadsheets do not have the flexibility of subsetting

data or rapid programmatic access from external tools for

machine learning or visualization.
Thus, the next step for most teams, as they begin to work

with more complex data with increased analytical demands, is

relational databases, which were first described in 1970.2

Relational database management systems (RDBMs) imple-

ment variations of the Structured Query Language (SQL;

commonly pronounced like sequel), which enables users to

describe data in terms of two-dimensional tables and relation-

ships between them, for example, one-to-one, one-to-many,

and many-to-many. A molecule may have many atoms, a col-

loid may have many molecules, and so on. SQL enables us to

ask complex queries across the relations, for example, to find

all of the molecules with a specific moiety or all of the mole-

cules above a given molecular weight. Tables can be indexed

for speed of access at the expense of the storage footprint. As

such, RDBMS and SQL provide powerful languages for data

manipulation and extraction in complex datasets with high-

dimensional data sets. Free and open-source RDBMs include

Postgress SQL and MySQL.
The way we store data has increased steadily in sophistica-

tion and usability; this, in turn, has led to new challenges with

the way we perform calculations on large-data sets. Comput-

ing with these data sets has begun to exceed the capabilities of

a single desktop machines or single high-performance com-

puters with tens of cores and lots of memory. Instead, new

strategies for computing have been developed that leverage

tightly coupled computers that share high-bandwidth, low-

latency networks and very fast networked file systems, that is,

shared storage space. Although these clusters have proven use-

ful, particularly for tasks such as molecular simulation, where

cluster nodes frequently exchange large amounts of data, they

remain quite expensive. There has been a realization that a

class of computational problems do not require tight coupling

between computers working on the same problem and can

make use a collection of loosely coupled, relatively inexpen-

sive computers with standard network connectivity. Perhaps

the quintessential example of this has been the MapReduce3

algorithm developed at Google for processing large amounts

of data, including Web pages. In the MapReduce model, an

input data set is partitioned between commodity computers

that work independently on a map step, which involves some

transformation of the input data, and a reduce step, which

aggregates the data from across all worker nodes. Multiple

MapReduce iterations can be combined to perform arbitrarily

complex tasks. The bedrock, open-source implementation of

MapReduce is the Apache Hadoop,4 and it has a rich software

ecosystem to support it. The strengths of Hadoop lie in its abil-

ity to coordinate the execution, in a fault-tolerant manner, of

lots of independent computers.
Environments such as Hadoop have been particularly useful

when they have been used on the loosely coupled, pay-as-you-

go computing platforms of cloud computing. The most popu-

lar examples of this are Amazon Web Services, which

includes their Elastic Compute Cloud for computing and Sim-

ple Storage Service for storing data, and Microsoft’s Azure.

Both could be considered infrastructure as a service, where

you pay for using the computational infrastructure, but what

you run on top of that infrastructure is your responsibility.

Data-intensive management and processing is not the only use
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for cloud computing for scientists and engineers. For loosely

coupled computing tasks, where user demand is not constant,

cloud computing can offer significant savings over the pur-

chase and maintenance of computer clusters, particularly as

the cost of electricity, cooling, and space grows. Thus, cloud

computing is emerging as a complementary tool for traditional

high-performance computing for certain classes of problems.

Statistical and machine learning

Roughly, statistical and machine learning is broken down

into two types: supervised and unsupervised. In supervised
learning (Figure 1a), the task is to define a model that can be

used to accurately predict an output or outputs from a set of

inputs. The inputs are described in terms of features or predic-

tor variables, and the outputs are described as labels or

response variables. For example, in a simplified quantitative

structure-activity relationship5 model for predicting boiling

points, a single feature/predictor for each input molecule

might be the number of pairs of atomic bonds that do not share

an atom, and the response variable is the boiling point.6 Most

learning tasks have multiple features or dimensions describing
the feature space with the values for a given sample described

by a point in this space, which is referred to as the feature vec-
tor. Feature spaces can be continuous or discrete (e.g., yes or

no; low, medium, or high).
In the previous example, the output was a real valued quan-

tity, and this maps well to many problems involving the pre-

diction of continuous outputs, such as binding affinities,

reaction rates, and probabilities. This process is generally

referred to as regression and is not confined to simple linear or

nonlinear regression, with which every chemical engineer is

familiar. However, we are not limited to continuous outputs.

Often, the task is one of classification, where the intent is to

place samples into an appropriate bin or to assign a correct

Figure 1. Simplified guide to statistical and machine learning choices. The two broad types of statistical and machine learn-
ing, (a) supervised and (b) unsupervised, are broken down into a simplified decision tree. An overview of the broad
types (i.e., the first two levels of classification) and definitions of the key terms are in the main text.
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label according to the samples’ features. The simplest form of

this is binary classification, where there are only two possible

classes, such as in the case where want to predict whether a

material will self-assemble or not (i.e., yes or no). A related

case is the multiclass problem, where an array of possible clas-

sifications is available and the goal is to identify the best clas-

sification on the basis of a sample’s features, such as whether

a given molecular configuration is in the reactant, transition,

or product state of a free-energy landscape.
A key component of supervised learning is the presence of a

training set or corpus from which to build the predictive

model. Typically, during training, after each example is passed

through the model, a cost or loss function is computed; this

function evaluates the model prediction against the known out-

put of the training example. This loss function then defines the

error or quality of the prediction. The objective of a learning

task is then to minimize the loss function. When training a

model on a training set, it is important to reserve some of the

training set for the evaluation of the model; this is often

referred to as the test set. That is, a portion of the training set

should not be used to train the model but should instead be

kept back and used only after the model is fixed to estimate

the accuracy of the model.
Three pitfalls potentially limit both the success of machine

learning implementation and the final accuracy. Noise can be a

problem in the training data and can lead to poor classification

accuracy or response predictions. Generally, one can view noise

in training data as arising from two sources: the features/predic-

tors or the labels/responses. In the case of underfitting, we chose

a model of insufficient complexity. In a trivial example of this,

take our self-assembly binary classification problem again. Con-

versely, if a model is overfitting, components of noise are

included, and it will not generalize well for new samples. In

this case, predictive accuracy can be very high for the training

set but poor for the evaluation examples or new samples.
In contrast to supervised learning, where the goal is to pre-

dict a label or response variable from an input set of features

or predictor variables, a separate class of problems exists

around the identification of the hidden structure in data on the

basis of some feature set. This is generally known as unsuper-
vised learning (Figure 1b), where no labels are attributed to

the training set and the goal is to directly infer the relation-

ships between samples. This challenge substantially differs

from supervised learning, as there is no cost or loss function to

indicate the quality of a model. Instead, each method has spe-

cialized metrics that need to be considered carefully.
One of the most familiar unsupervised learning approaches

is clustering. In this paradigm, unlabeled data are grouped by

some measure of similarity into clusters, which link related

samples such that some sort of labeling can be inferred. Two

factors describe a clustering strategy: the nature of the similar-

ity or distance metric and the clustering algorithm. The most

well-known distance metric is the Euclidean distance, but

there are a variety of others, including the Manhattan distance,

Pearson correlation, and Spearman correlation. The choice of

a distance or similarity metric is predicated on the nature of

the data, its underlying distribution, and the potential for noise

and error. Common clustering algorithms include centroid

methods such as k means,7 density-based methods,8,9 self-

organizing maps,10 and hierarchical clustering.11 As with the

choice of a distance or similarity metric, each of these meth-

ods has strengths that depend on the nature of the data and a
priori knowledge of the behavior of the system to be modeled.

Suggested reading

The area of statistical and machine learning is a rapidly

evolving discipline, with new algorithms being developed con-

tinuously. We can, however, recommend two texts that survey

the most common methods in both supervised and unsuper-

vised learning. The first, An Introduction to Statistical Learn-
ing,12 is readily approachable, and includes some thoughts on

deciding between algorithm choices, and provides example

code. The second, in some sense an extension of the first, Ele-
ments of Statistical Learning,13 is more comprehensive and

positioned for the mathematical and statistical oriented

researcher; it has superb detail about the range of methods.

Visualization

Once the data have been cleaned, structured, and integrated

in a data management system, users need the ability to explore

them. Thus, the third and final keystone component of data

science is the visualization and interactive exploration of the

data and quantities computed from it. It is important to note

that the role of visualization is not to replace the statistical

algorithms just described but rather to use them to support

decision making and knowledge by users.
Vision is our most powerful communication vehicle. Any-

one who has tried to find the pattern in a table of numerical

values versus a heat map of the same data is readily familiar

with this. However, the capacity of our vision is limited to two

or three dimensions at a time. High-dimensional feature spaces

make visualization difficult, if not impossible. To combat this,

we can turn to dimensionality-reduction techniques. However,

if the goal is to simply reduce the dimensionality in continuous

spaces without the need for classification, simpler forms of

dimensionality reduction exist; these include principal compo-

nent analysis14 (PCA) and multidimensional scaling.15 Both

methods approximate the distance of data in a high-

dimensional feature space in a lower dimensional space, for

example, two dimensions. When one uses these methods for

dimensionality reduction, it is important to examine the mea-

sure of fit. For PCA, this is the cumulative amount of variance

in the feature data explained by the number of dimensions

chosen for the reduction, and in multidimensional scaling, it is

the strain of the fit from the high-dimensional feature space

into the lower dimensional visualization space.
The work of Edward Tufte16–19 has been influential in the

visualization and presentation of data. Visualization tools,

such as Data-Driven Documents,20 have simplified the crea-

tion of stunningly beautiful visuals from traditional scatter-

plots and bar charts to nontraditional chart types, such as

chord diagrams (e.g., Circos21); graphs; network diagrams

(e.g., Cytoscape22); tree maps that are used to describe hier-

archical partitioning; Sankey diagrams, which can describe the

flow through a system (see Sankey’s 1898 model of a steam

engine); and interactive sunburst charts,23 which are hierarchi-

cal pie charts.
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Areas of strength and opportunities in chemical
engineering research

In this section, we highlight a few selected research areas
within the chemical engineering field where there are growing
uses of data science as illustrative examples of how these
methods may be applied to our field. Of course, this list is not
exhaustive nor could an article such as this even begin to fully
do justice to (1) the potential impacts data science will make
in the future or (2) areas of excellence in chemical engineering
research where these tools are already being used. As for the
former, we believe complex data intensive work is here to
stay, and we hope many readers will be inspired and motivated
by these examples. As for the latter, interested readers are
referred to the rich literature on complex systems24,25 and pro-
cess systems engineering26 for representative examples.

Computational Molecular Science and Engineering.
Examples of the effective use of data science methods in the
area of molecular science and engineering can already be
found in the literature. Although many current applications in
this area are predominantly found in the domain of computa-
tion and theory, we expect that data intensive wet-lab experi-
mentation in molecular science will soon feel the impacts of
these useful methods. In this section, we briefly review four
subareas of (computational) molecular science and engineer-
ing with a broad survey of research progress enabled by vari-
ous data science methods. The literature is rich with many
additional examples (with the numbers growing weekly), and
our goal in this subsection is, in particular, to provide a broad
overview of different types of data science approaches that
can be applied to molecular science.

Making ab initio calculations faster with neural-network
potentials. There are countless research groups making rou-
tine use of quantum chemical (ab initio) methods to study the
electronic and energetic properties of a huge range of systems.
As a general rule, first-principles methods offer the promise of
quantitative predictive power at a high level of accuracy but at
the penalty of great computational cost. Therefore, the idea
has emerged to use supervised learning techniques [viz., artifi-
cial neural networks (ANN)] to create efficient potentials that
represent the complex quantum mechanical potential energy
surface (PES). Proof of concept with an empirical potential
was provided 20 years ago by Blank et al.,27 who demon-
strated that a simple ANN for a PES could be faithfully used
to carry out more complex analyses (e.g., transition-state
theory calculations). Around a decade ago, Lorenz et al.28

demonstrated how a real quantum chemical potential for a het-
erogeneous system could be obtained. A short while later,
Behler and Parrinello29 offered a solution to address the diffi-
culties in applying ANNs to high-dimensional quantum chem-
ical potentials for systems such as bulk silicon. The structure
of the ANN was reformulated on an atom-centered basis,
inspired by the topology of molecules and materials them-
selves; this ultimately conferred much more transferability
and generalizability to the approach. As an illustrative exam-
ple, an ANN model was developed for silicon; this led to a
speedup of five orders of magnitude in energy calculations
with only minimal accuracy losses. Many further examples,
including ANN potentials for challenging systems such as
sodium30 and graphite,31 have been created with this approach.
A general software tool for creating ANN potentials from ab

initio calculations has been released,32 and this can signifi-

cantly increase the usability of the approach. Finally, the

application of data science tools to ab initio calculations is not

limited to ANN representations of the PES. This is illustrated

in recent examples demonstrating on-the-fly machine learning

of quantum mechanical forces to facilitate molecular dynam-

ics (MD),33 the prediction of atomization energies,34 and even

applications of the discovery of the underlying density func-

tional with machine learning.35

Discovering the properties of molecules and macromole-
cules. Moving up in scale from the electronic/atomistic

domain, it is possible to find many applications of data science

methods to the study of molecular, biomolecular, and macro-

molecular systems. A common use of supervised learning

algorithms is the so-called quantitative structure-property rela-

tions, which relate calculated or measured properties (usually

performance metrics) to underlying features in the molecular

structure. Arguably, these relations are best known for their

applications in protein/ligand screening.36 However, recent

examples in the area of predicting the properties of ionic

liquids37 and natural products38 have demonstrated potential

uses far beyond the pharma and drug industries. Machine

learning has found great use in the design of organic electron-

ics.39,40 A common motif is to use a large training set of ab
initio calculations to predict many properties and then to use a

supersized learning technique, such as ridge kernel regression,

to optimize a target molecular feature to optimize a particular

desired set of features. This is a general approach in the spirit

of the recent Materials Genome Initiative (MGI) to accelerate

the speed of discovery of new useful materials and to facilitate

more efficient and effective use of resources devoted to the

synthesis and characterization of new molecules and materials.

As the number and extent of these examples grow, we expect

that these methods will become commonplace, and it will

become even easier for other researchers to adopt these

approaches.
The area of molecular/biomolecular science also contains

many examples of the effective use of unsupervised learning

approaches. The most common example is the use of

dimensionality-reduction techniques, such as PCA or related

methods. The diffusion map approach41 is a recent example

that has been applied to the discovery of collective descriptors

of chain dynamics. In the area of nonequilibrium MD simula-

tions, a self-learning algorithm, reconnaissance metadynam-

ics,42 was introduced to facilitate discovery of slow-coarse

degrees of freedom in a general way. These approaches are

important for the general class of problems in which high-

dimensional systems (e.g., an all-atom MD calculation) need

to be represented by a few (nonobvious) slow degrees of free-

dom. Finally, the area of data management and visualization is

also one that has seen significant progress by researchers in

this field. The Dynameomics project,43 among other advances,

has led to the creation of a massive infrastructure for data

management and processing in molecular simulations.44,45

The SketchMap framework is another example of a complex

data visualization method that can be applied to advanced MD

calcuations.46 The illustration of a complex visualization of a

molecular simulation via SketchMap47 is shown in Figure 2.
Applications of data science in materials science. The

aforementioned MGI (https://www.mgi.gov), launched by the
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U.S. government in 201148 as a multiagency initiative to

accelerate the speed of discovery of new materials, has led to

significant new applications of data science in all areas of the

materials field.49 Applications of supervised learning have

been deployed to make unprecedented use of massive data sets

coming from high-performance computing. For example, the

Open Quantum Materials Database (https://oqmd.org) from

the Wolverton research group50 allows a wide range of tasks

from searching existing materials to hypothesizing phase dia-

grams for new materials. In reflection of modern computer

usage, the database can be directly queried through Twitter.

The Materials Project51 is a similarly inspired materials

genome approach, which is devoted to data mining from

large-scale quantum chemical calculations. It contains, at this

writing, over 65,000 materials in a searchable database form.

The Harvard Clean Energy Project,52 which uses distributed

worldwide computing, is another example and is specifically

devoted to the discovery of next-generation photovoltaics.

These examples, in particular, demonstrate the power of the

effective use of the large data sets resulting from massive par-

allel computing that are rapidly becoming commonplace. In

the area of the discovery of porous materials, significant dis-

covery has been achieved through automated screen

approaches53 inspired by many of the previous methods, in

particular, in the application of the discovery and design of

zeolites and metal-organic frameworks.54–57

Predicting the chemical reactions of molecules and mate-
rials. In the area of complex reaction networks,58 there have

been fewer applications of advanced data science approaches.

This is in contrast to the growing number of examples (several

highlighted previously) of the use of data science methods to

predict the reactivity of specific reactions. The connection

between a series of chemical reactions and a neural network

has long been noted,59 albeit from the perspective of the

design of new methods to carry out calculations. Examples of

the prediction of the time-dependent behavior of combustion

systems with ANNs have been demonstrated.60,61 A general

approach for discovering chemical reaction mechanisms with

ANNs has also been proposed.62 Finally, in the area of

physics-based (ab initio MD) simulations, a generic, nonequi-

librium approach based on the metadynamics framework and

inspired through spectral graph theory was proposed to predict

chemical reaction networks (CRNs);63 it was further demon-

strated by the discovery of reaction mechanisms applied to

methanol combustion.64

Synthetic Biology. Model-driven synthetic biology is

beginning to reduce the time and resources needed to engineer

biological systems for applications in materials, chemicals,

Figure 2. Visual analysis of the free-energy landscape of clusters of 38 Lennard-Jones spheres at the system’s melting tem-
perature. The free-energy is directly projected onto the SketchMap coordinates. The histogram insets relate relative
to populations of different configurations. Reprinted with permissions from ref. 47. Copyright American Chemical
Society.
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energy, the environment, and health.65–69 Computational

approaches for synthetic biology are becoming much more

effective with the advent of high-performance clusters and

data science methods for rapidly simulating and analyzing

very large numbers of potential system designs. Design rules

for the generation of new components and system specifica-

tions are being identified through large-scale experimentation,

data mining, and machine learning. Finally, advancements in

visualization and cloud-based data management are facilitat-

ing the distribution of functional designs and streamlining the

engineering process. In this subsection, we draw on literature

examples and the work of one of the authors (J.M.C.) to show

how data-enabled methods are propelling a shift toward the

creation of models and simulation tools for predictable biolog-

ical components and system engineering.
Large-scale design space mapping for complex system

engineering. Traditionally, it has been difficult to create

effective models for engineering cellular systems because the

underlying design spaces are vast, there are a large number

of components, and the relevant parameter values are largely

unknown and frequently changing.68,70 However, the chal-

lenge of engineering complex components and systems has

become more tractable through large-scale simulation analy-

sis. For instance, coarse-grained kinetic model construction

combined with large sampling-based methods have enabled

the identification of metabolic control circuit designs to sig-

nificantly improve production titers71 and has allowed auto-

mated metabolic network reconstruction.72 Genome-wide

simulation analysis has even been used successfully to pre-

dict growth phenotypes in model organisms.73 Large-scale

simulation and advanced statistical analysis can be used to

search design spaces and identify component specifications

for meeting target performance criteria. By reducing the need

for trial-and-error experimentation, we can gain access to

biological device and system designs with complexities not

otherwise achievable.68

We previously developed model-driven approaches for

engineering RNA-based genetic control devices to quantita-

tively program pathway and circuit gene expression. Coarse-

grained mechanistic models74 were first formulated as CRNs75

for simulating genetic outputs in the system. To map the high-

dimensional design space, sets of Ordinary Differential Equa-

tion(s) (ODEs) corresponding to the CRNs were solved with

parameter values drawn from biochemically plausible ranges.

Global sensitivity analysis76 provided statistical tools for

building up an understanding of the fitness landscape, even

though these were necessarily sparse samplings of the design

space. Monte Carlo filtering77 was used to cluster the simula-

tions as behavioral or nonbehavioral according to the output

values; this generated the component specification ranges

expected to give desired activities. The 94% correlation

between the predicted and experimentally measured gene

expression levels for 25 different engineered RNA devices

validated the models and simulation analysis-based approach.
Engineering efforts aimed at harnessing cellular metabolism

for the production of chemical and materials introduce stresses

that the host cell may not have evolved to easily accommo-

date.78 Engineered metabolic pathways have been successfully

constructed with dynamic regulatory controllers that increase

production titers by minimizing the buildup of toxic pathway

intermediates71 and enzymes and by balancing the supply and

demand for cellular resources.79 Large-scale computational

simulation can inform the design and testing of engineered

control circuitry. Sampling-based approaches were used to

map the space of potential designs for dynamic sensor-

regulator systems to produce fatty-acid-based chemicals and

biodiesel molecules in Escherichia coli.71 Global sensitivity

analysis indicated that biodiesel production titers could be

improved with dynamic pathway control across a broad range

of design parameters compared to systems comprised only of

static controllers. Consistent with model-derived predictions,

the strains with engineered dynamic control system gave three

times more fatty acid ethyl ester biodiesel equivalents and

reached 28% of the theoretical maximum.
In principle, almost any biological control problem can be

solved by dynamic systems that convert cues about the inter-

nal and external environments into programmable outputs that

facilitate resource load balancing in changing condi-

tions.72,77,80 Recent work has shown that computational simu-

lation and global sensitivity analysis can be used to uncover

successful control architectures even within enormous bio-

chemical design spaces.81 Through the automation of the pro-

cess of coarse-grained mechanistic model generation for 728

unique control architectures, the production of an industrial

aromatic from a 15-gene engineered pathway was simulated

for 3 3 106 distinct biochemical implementations. With Latin-

hypercube sampling, clustering algorithms, and methods for

statistical analysis under conditions of parameter uncertainty

(e.g., bootstrapping), experimentally tractable design specifi-

cations were identified to solve pathway control problems and

enable greater than ninefold increases in production (20% of

the practical maximum, see Figure 3).
As efforts to create more full-fledged computer-aided

design platforms70 continue, large-scale design space mapping

will play an increasingly important role. The development of

next-generation approaches that simulate behaviors across

multiple time scales and levels of complexity82 (i.e., pathways,

networks, and cells) will be important for further advance-

ments. Ultimately, data-enabled design strategies could help

realize the construction of complex, multilayered information

processing and control systems to program the cell state across

the levels of components, pathways, and networks for a wide

range of applications.
Discovering biological design rules through data mining.

Pre-existing biological components and systems have been

subjected to unknown evolutionary trajectories and contain

embedded functions that are difficult to discern. For genetic

expression components, context-dependent differences in the

need to maintain flexibility in the type, time scale, or sensitiv-

ity of the response may confound efforts to derive meaningful

design rules that could be used to engineer new components

and systems. Further complicating the analyses of pre-existing

metabolic networks is the fact that the topologies, or connec-

tions between the sensed molecules and the actuation func-

tions, are not completely known.83 Dramatic reductions in the

cost of massively scaled DNA synthesis and sequencing are

resulting in new opportunities for fabricating libraries of com-

ponents and systems and then applying statistical analysis to

multiplexed experimental data to uncover engineering design

rules.84 In this way, forward engineering approaches are
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beginning to render otherwise intractable questions about the
relationships between sequences and functions much more
accessible to experiments.

Design rule discovery can be achieved through the iterative
addition of variables to models, which are then evaluated for
accuracy and fit to sets of data obtained through functional
library screening. For example, rules for describing important
aspects of genetic expression in bacteria (transcriptional termina-
tion) have been uncovered by the integration of biophysical
modeling and cross-validation, where model accuracy was
scored by the calculation of an average coefficient of correla-
tion.85 Progress toward the automated design of control elements
for protein translation has been made through the integration of
thermodynamic models with sequence library screening.86

Through the combination of diversity-oriented sequence design
with experimental filtering (sort-seq), mechanistic understanding
of how naturally occurring gene sequences have evolved to mod-
ulate protein expression have even been obtained.84

Looking ahead, there is great potential for unsupervised
learning approaches, such as PCA and dimensionality reduc-

tion, to further improve the process of design rule and model
discovery. In this respect, recent work that measured splicing
patterns from more than 2 million synthetic minigenes and
then used machine learning to train models was particularly
promising. In this case, additive effects from nearby sequence
elements could be identified, and models trained only on syn-
thetic data could, nonetheless, be applied to naturally occur-
ring biological systems as well.87

Data management and visualization in synthetic biology.
The formal separation of functional design from physical
implementation has been a key advancement for building
complex systems in a number of engineering disciplines,
including electronic circuit design.86 For biological compo-
nents and systems, this will be essential if we are to realize the
goal of assembling large, complex, fully functioning systems
from separately generated and characterized components.6

With increasing systems complexity comes a need for data
structures and visualization techniques to support computa-
tional design and meaningful human interaction with those
data.87–89

Figure 3. Engineered industrial aromatic [p-aminostyrene (p-AS)] production pathway and control system design space. (A) In
principle, pathway control problems (red) can be solved by with the implementation of a dynamic genetic control
system; gene product names (in bold) are indicated next to numbered pathway steps, the blue and green dashed
lines indicate sensing functions, carried out by aptazyme-Regulated Expression Devices (aREDs) engineered to be
responsive to metabolites, and orange dashed lines indicate actuation functions. (B) Massively scaled kinetic model
simulation from 3 3 106 implementations and global sensitivity analysis identified experimentally tractable design
specifications expected to solve pathway control problems and improve production in the system by more than
ninefold. Here, four types of dynamic genetic control mechanisms were investigated: aREDACT (aRED-activating)
and aREDREP (aRED-repressing) for control through transcript turnover, aRED-small RNA (aRED-sRNA) for transla-
tional control, and aRED-Transcriptional Repression (TR) for direct transcriptional control. Reprinted with permis-
sions from ref. 95. Copyright American Chemical Society.
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Tools for visualization and integration with rigorously

defined data models could allow for cycles of design-build-

test systems engineering aimed at complex system construc-

tion in teams distributed across multiple sites. Web databases

of standard biological parts containing thousands of compo-

nents have been commonly used by students of synthetic biol-

ogy for more than a decade.86 More recently, community-

driven efforts have led to a proposed Synthetic Biology Open

Language, which formalizes data standards for exchanging

designs and for visual representations to make it easier for

engineers to create and communicate them to others.90 Syn-

thetic Biology Open Language developers have already pro-

vided a practical demonstration of distributed design and

engineering with the new data-exchange standards. When

used alongside data-enabled tools for simulation and design,

sophisticated data exchange could seamlessly integrate exper-

tise across multiple industrial and academic sites to dramati-

cally increase the sizes and complexities of the biological

systems that can be engineered.

Energy systems and management. There is widespread

popular support for the use of renewable energy, particularly

solar and wind, which provide electricity without giving rise to

any carbon emissions.91 However, the energy generation from

these resources is intermittent. The variability of these sources

increases the need for power system storage and backup genera-

tion capacity to maintain the power balance and to meet the

load demands in different operating scenarios.92 Electricity pro-

viders must have enough installed power capacity to match

peak demands and must continuously operate at enough

capacity to meet real-time demands. This requires the use of a

large number of distributed large-scale energy storage devices

within the grid systems. Electrochemical energy storage devices

offer the flexibility in capacity, sitting, and rapid response

required to meet the application demands over a much wider

range of functions than many other types of storage.
Within the electrochemical energy storage research area,

data science will play a critical role in the discovery and

invention of new electrode materials, electrolytes, membranes,

and so on. In addition to the aforementioned MGI, an electro-

lyte genome initiative93 has been initiated in the search for

cheaper energy storage devices, which are expected to meet

the cost barrier of $100/kWh.
A wide range of models have been developed and used to

understand the performance of lithium-ion batteries (Figure

4).94 Similar models are used for flow batteries and account

for the changes in design, chemistry, and dynamics. To this

date, despite significant advances in modeling, in particular at

the microscale and nanoscale, the open-circuit voltage of ter-

nary alloys used in lithium-ion batteries cannot be accurately

predicted (within a typical experimental measurement error of

5 mV). It is expected that results from the aforementioned

MGI will bring new multiscale models capable of bridging

this gap. This effort will be highly interdisciplinary and will

require contributions from physicists, chemists, material scien-

tists, computer/data scientists, and chemical/mechanical engi-

neers contributing to forward and inverse simulation in

Density Functional Theory (DFT) calculations.
A potential area of opportunity for data science approaches

to make an immediate impact in the quest to improve energy

systems is in the area of nonlinear model predictive control

(NMPC). Many of the aforementioned methods will play a

significant role in the NMPC of batteries and grids for improv-

ing the efficiency (reduce cost), stability (prevent black outs),

and safety (prevent battery explosions) and for enabling a

higher level of penetration (increasing the number of off-grid

installations based on renewable sources). The NMPC

approach has been successfully demonstrated on several chal-

lenging problems, including batch nonisothermal reactors,95

batch crystallization processes,96 Tennessee Eastman plant

control,97 and distillation units.98 There are also several excel-

lent reviews and perspectives on NMPC99,100 and economic

model predictive control.101

We use a classic example from reaction engineering95 to

illustrate the advantages of addressing rich nonlinear dynamic

problems through NMPC and some of the current challenges

that could be addressed through data science. The model for

an exothermic reaction A ! k1

k21
R in an unsteady state CSTR is

given as follows:

dCA

dt
5

CAi2CA

s
2k1CA1k21CR

dCR

dt
5

CRi2R

s
1k1CA2k21CR

dTr

dt
5

2H

qCp
k1CA2k21CR½ �1 Ti2Tr

s

where Ti is the feed temperature, which is the manipulated

variable, and CR is the controlled variable. For a particular set

of parameters (see ref. 95), this model exhibits sign change in

the process gain. It can be theoretically shown that the tradi-

tional control and linear or linearized control for this model

will be unstable, whereas NMPC offers stable control, even in

the presence of uncertainties in the states or parameters. As

described later, the expanding uses of NMPC will require that

researchers go beyond traditional solution methods, which are

typically limited to small-core laptop or desktop machines.

Energy systems and devices, in particular energy-storage

devices (i.e., batteries), are energy intensive and typically

operate over significantly different scales (capacitors operate

only for few seconds, batteries operate from seconds to hours,

Figure 4. Wide range of physical phenomena that dictate
different computation demands. Abbreviations:
P2D 5 Porous 2 Dimensional , KMC 5 Kinetic
Monte Carlo.
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and flow batteries operate from minutes to hours). Most of
these devices include electrochemical reactions, operation far
from equilibrium, undesirable side reactions, thermal effects
and runaway (batteries exploding), significant resistance, and
delays caused by transport in multiple phases across multiple-
length scales. Fortunately, continuum-level models (which
require experimental open-circuit data) have been validated
for the prediction of performance curves (charge-discharge
curves) for lithium-ion batteries over a wide range of operat-
ing conditions and for different design parameters or configu-
rations.102 Battery models are stiff, and the model parameters
have significant uncertainties with unstable dynamics; these
are caused by the exothermic reaction, which can lead to ther-
mal runaway. NMPC is the only option to guarantee optimal
performance and stable operation as the battery degrades with
life and use.95

Status quo in microgrid design. Today, an energy micro-
grid is designed and operated in a manner similar to how tradi-
tional large-scale energy grids are controlled (e.g., a
dispatchable energy-generating unit might be replaced by
intermittent weather-driven sources). A representative energy
microgrid is shown in Figure 5. The typical approach for the
design of a micogrid control system is encapsulated in four
steps:

1. The assumption of a discrete model-in-time domain for
each component.

2. The assumption of the validity of simple/linear
dynamic models (i.e., a few differential equations for each
component).

3. The use of a power conversion unit separately connected
to both solar generation units and battery units (this reduces
the efficiency of each of these systems by at least 8%).

4. The use of steady-state models or simple (linearized)
approximations for dynamic models (e.g., with transfer func-
tions) for each component.

The typical approaches that include batteries for microgrid
control are based on highly simplified models of the batteries,
where these are represented as black boxes (i.e., either steady-
state or empirical fits).

This approach has served the community well, and there are
several advantages to building our design and control strat-
egies with the approach described previously. First, as the
models are inherently linear or trivially linearizable, optimiza-
tion is easily performed, for example, with the IBM CPLEX
Optimization Studio. Second, the microgrid model is modular,
and additional components can be added or removed (e.g.,
imaging changing between solar, wind, or other renewable
energy inputs). Finally, linear models are computationally effi-
cient and robust and consume very little RAM.

However, as they pertain to advanced predictive control, the
weaknesses of the current approach clearly suggest that data sci-
ence methods may be very useful in the future. The major dis-
advantage is the fact that the current status quo uses lithium-ion
or other storage devices as simple black-box or empirical mod-
els. One consequence of the use of such models is that batteries
cannot be used for the entire swing of depth of battery discharge
(40% instead of 100% discharge). For example, a recent publi-
cation summarizes the tradeoffs in control of microgrids.103

Unfortunately, simple empirical models were used to determine
the performance of the batteries. The batteries were assumed to
operate only in a narrow window (80% of the quoted capacity,
which is roughly 65% of real capacity for most batteries, as
manufacturers typically overstock the amount of materials to
guarantee performance). In addition, charging rates were

Figure 5. Simple microgrid connecting solar generation, lithium-ion battery storage, and demand forecast.
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assumed to be low in these models, as higher rates would dam-

age the batteries because of the increase in temperature.
Furthermore, because the battery lifetime modeling (i.e.,

long-term performance degradation) could not be included in
the aforementioned commonly used schemes, the cost of the

microgrid could not be optimized with respect to the battery
life and replacement costs. That is, only constraints for the

energy grid were achieved, an approach that precludes the
maximization of the useable lifetime of the battery and may

preclude maximization of the safety of the battery. Finally,
because a black-box approach was used, it was impossible to

impose dynamic path constraints on internal nonmeasurable
variables within the micogrid. For example, if the internal
temperature of the battery is not modeled, the battery must be

operated at very low rates to ensure that the internal tempera-
ture does not rise high enough to reduce battery life and/or cre-

ate unsafe operating conditions.
Potential of NMPC in energy microsystems. The poten-

tial benefits of a multiscale approach with the previously

described NMPC methodology should lead to improved mod-
els and design, better control, and significantly improved bat-
tery operation. An overall framework for implementing

NMPC in an energy microsystem could be as follows:
1. The development of detailed physics-based models for

lithium-ion batteries that predict lifetime, safety, and temper-

ature and enable the aggressive operation and control of
batteries.

2. The development of detailed models capable of predict-

ing the stochastic behavior of renewable-based power gener-
ation and the dynamic behavior of the controllable

generation around their preferred operating points and solv-
ing the relevant power grid equations.

3. The simultaneous simulation and optimization of an
integrated system (similar to Figure 5) to achieve the optimal

level of control at the grid level (e.g., to meet power grid
constraints) and at the same time optimize batteries (i.e.,

each cell/stack) individually at the node level.
4. The development of a conversion of the performance

of each controller/action to the cost based on the life of the

batteries and the use of this information to provide monetary
units for a leveled cost of energy in real time for both bat-

teries and rerouting of power within the grid.
5. Batteries that are very similar will have different life

and performance characteristics depending on the ambient
conditions, customer demand, and locations. Data will be

available from various distributed installations, and data sci-

ence is expected to help not only analyze the performance of

these devices but also control these devices for improved

life, safety, and economic benefit.
The development of such an approach would have imme-

diate impacts on the efficiency and economics of using

renewable energy systems. There are many inherent advan-

tages to moving to a scheme such as NMPC that enables

on-the-fly optimization and control. For example, the life-

time and performance of the battery are natively included

within the action of the controller; this enables 100% drain-

age per cycle and extends the lifetime of the battery. The

entire cost of the microsystem installation could be reduced

(up to 40% by some estimates104,105) because of the con-

comitant reductions in battery cost. Real-time information

with respect to energy routing/rerouting can be given on

demand to customers, who can then decide to store, reroute,

or use energy on the basis of fluctuating cost, needs, and

demand. Finally, there is the advantage of additional poten-

tial reductions in the operating costs of the microgrid by the

harmonious operation of the batteries over their entire

range of operation in conjunction with available power-grid

resources.
However, there are reasons why this approach has not yet

gained widespread adoption. The NMPC framework, imple-

mented in a way that maximizes predictive control, leads to

severe computational challenges that must be addressed.

First of all, multiple cells in stacks lead to 104 or more differ-

ential algebraic equations (DAEs), which arise from the dis-

cretization of the partial differential equations governing the

behavior of the batteries. These equations must be solved

and optimized simultaneously.106 Second, computational

demands are increased by the sheer scale of the model com-

bined with the nonlinearities of the equations and uncertain-

ties in the parameters and mechanisms. Although the

numerical solution of DAEs and large-scale models have rea-

sonably matured,107,108 significant RAM and CPU require-

ments still persist for higher index DAEs (and even index 1

DAEs with a nonlinear nature) during the integration of thou-

sands of equations connecting multiple devices within a grid,

in particular for optimization, state, and parameter estima-

tions. Finally, some individual components of the entire

microgrid control model might include algorithms for partic-

ular components within the grid that are in the form of

black-box models (e.g., because of licensing or intellectual

property issues). This also reduces the efficiency of system-

level simulation and control.
Future impacts of data science in energy microsystems

management. With the aforementioned computational chal-

lenges, there is an opportunity for the field of data science to

help make gains in the implementation of the NMPC frame-

work. Specific examples are listed as follows:
� The improved data management and visualization of

streaming data sets related to sensors and diagnostics that

are ubiquitous within energy microgrids.
� The use of cloud computing technologies to provide fast

and robust processing of large data sets within the NMPC

framework.
� Systematic improvements in the integration of different

level of algorithms, control architecture, protocols within

a microgrid for power, and information flow.

Figure 6. Conceptual framework for a cloud-based battery
management system.
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� The use of distributed computing to support communica-

tion and filtering of solar and demand forecast data within

the grid and across multiple connected/disconnected grids.
� Improved parameter fitting and model operation for on-

demand estimation of the microgrid state (e.g., the devel-

opment of a microgrid model that can handle multiple bat-

teries in real-time within a grid and multiple batteries

across multiple grids owned by utilities).
Figure 6 provides an envisioned role of cloud computing in

the management of batteries for different applications (e-

bikes, vehicles, and grids). The level of computing resources

varies according to the application, and self-learning algo-

rithms can play a critical role in optimizing and managing

these systems. Although it is not possible to move all of the

predictive models to online control for all of the applications,

cloud computing with infinite resources can provide updated

models, parameters, and control policies to individual Battery

Management Systems (BMS) units. The time delay in data

transfer between individual units and the cloud is, of course,

best handled by NMPC algorithms compared to standard con-

trol schemes.
The optimization of large systems of models for grids oper-

ating at various locations with data collected at distinct loca-

tions presents a grand challenge at the intersection of data

science and systems engineering. Meeting this challenge

would provide significant benefits to individual residential

customers by providing them options for their daily routines/

energy use through mobile computing and would thereby

make tangible changes in the way society consumes energy.

Although some progress has been made in the scaling of line-

arized/linear predictive control algorithms to arbitrarily large

systems, further research is needed to scale NMPC algorithms

to arbitrarily large systems.108 As a note to interested readers,

a brief history on process control and future needs is provided

elsewhere,109 wherein the need to integrate process control

with data science is specifically addressed.

Conclusions: Ideas for Making Data Science
Mainstream in Chemical Engineering

One obvious challenging in raising our competency (as a

profession) in data science is how to (or if we should) include

it in the university curriculum or in a professional develop-

ment context. We end this Perspective with a few closing

thoughts on how this might be achieved in a sensible yet effec-

tive manner.
We begin by pointing out that the in the area of usability of

data science methods, there has been an explosion of excellent

free software tools that support data management, statistical and

machine learning, and visualization. The growth of DIY learning

online also means there is an accompanying amount of help

readily available. A great starting point is the programming

environment Python. An interactive version of Python is avail-

able on every computing platform in a convenient Web site

framework (i.e., IPython Notebooks). There are countless You-

Tube videos available today to teach all aspects of this, from

installing the software to using complex machine learning or

visualization algorithms. This is just one example (of many),

and the ubiquity of data science across many disciplines of sci-

ence and engineering means that there is widespread support.

In the area of university education (both graduate and
undergraduate), we point out that there may be room for small
tweaks in the curriculum to accommodate data science. Most
undergraduate curricula in chemical engineering offer a
numerical methods or applied computing course. These
courses were developed to help students implement methods
to solve complex math problems related core engineering
coursework (e.g., solving systems of 10 or fewer nonlinear
equations or the numerical integration of a handful of ODEs).
However, the growth in computing power and the ubiquity of
multicore processors combined with the many available off-
the-shelf codes (or even free Web sites) to solve these prob-
lems means that we could streamline the introduction and
instruction on the use of these methods while still maintaining
a focus on essential knowledge that chemical engineers need.
An obvious alternate choice would be the addition of elective
coursework or professional development workshops. The
aforementioned growth of free online self-guided tutorials is
another way to supplement the traditional chemical engineer-
ing curriculum. We expect that any of these approaches would
be tractable without the sacrifice of any of the rigor and funda-
mental knowledge at the heart of our disciplinary training.

In closing, we believe the future of data science within the
chemical engineering field is very bright. The methods and
tools offered by the data science field have much to add to
many aspects of our work across a wide range of subfields in
our discipline, and chemical engineers are well-poised to dive
into a data-rich future.
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